1

alt text

\(\displaystyle\lim_{n\rightarrow\infty}\frac{2^{-n}}{n(n+1)}\sum_{k=1}^{n}C_{n}^{k}・k^2\)

解:

\[\displaystyle\because(1+x)^n=\sum_{k=0}^{n}C_{n}^{k}・x^k\]

\(\displaystyle\therefore\) 对二项式\(\displaystyle(1+x)^n=\sum_{k=0}^{n}C_{n}^{k}・x^k\)两边求导:

\[\displaystyle n(1+x)^{n-1}=\sum_{k=0}^{n}C_{n}^{k}・kx^{k-1}\]

两边同时乘以\(x\)

\(\displaystyle nx(1+x)^{n-1}=\sum_{k=1}^{n}C_{n}^{k}・kx^k\)

两边再次求导:

\[\displaystyle n(1+x)^{n-1}+nx(n-1)(1+x)^{n-2}=\sum_{k=1}^{n}C_{n}^{k}・k^2x^{k-1}\]

\(x=1\)

\[\displaystyle \sum_{k=1}^{n}C_{n}^{k}・k^2=n(n+2)・2^{n-2}\]

\(\therefore\) \(\displaystyle\lim_{n\rightarrow\infty}\frac{2^{-n}}{n(n+1)}\sum_{k=1}^{n}C_{n}^{k}・k^2=\lim_{n\rightarrow\infty}\frac{2^{-n}}{n(n+1)}n(n+2)2^{n-2}=\frac{1}{4}\)